av日韩中文_日韩成人午夜精品_日韩国产激情在线_久久久噜噜噜久久中文字幕色伊伊_久久综合社区_欧美激情一级精品国产_51精品在线观看

DreamFusion: Text-to-3D using 2D Diffusion

Ben Poole
Google Research
Ajay Jain
UC Berkeley
Jonathan T. Barron
Google Research
Ben Mildenhall
Google Research
Paper Project Gallery

Abstract

Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs. Adapting this approach to 3D synthesis would require large-scale datasets of labeled 3D assets and efficient architectures for denoising 3D data, neither of which currently exist. In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis. We introduce a loss based on probability density distillation that enables the use of a 2D diffusion model as a prior for optimization of a parametric image generator. Using this loss in a DeepDream-like procedure, we optimize a randomly-initialized 3D model (a Neural Radiance Field, or NeRF) via gradient descent such that its 2D renderings from random angles achieve a low loss. The resulting 3D model of the given text can be viewed from any angle, relit by arbitrary illumination, or composited into any 3D environment. Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.

Given a caption, DreamFusion generates relightable 3D objects with high-fidelity appearance, depth, and normals. Objects are represented as a Neural Radiance Field and leverage a pretrained text-to-image diffusion prior such as Imagen.

Generate 3D from text yourself!


Example generated objects

DreamFusion generates objects and scenes from diverse captions. Search through hundreds of generated assets in our full gallery.


Composing objects into a scene


Mesh exports

Our generated NeRF models can be exported to meshes using the marching cubes algorithm for easy integration into 3D renderers or modeling software.


How does DreamFusion work?

Given a caption, DreamFusion uses a text-to-image generative model called Imagen to optimize a 3D scene. We propose Score Distillation Sampling (SDS), a way to generate samples from a diffusion model by optimizing a loss function. SDS allows us to optimize samples in an arbitrary parameter space, such as a 3D space, as long as we can map back to images differentiably. We use a 3D scene parameterization similar to Neural Radiance Fields, or NeRFs, to define this differentiable mapping. SDS alone produces reasonable scene appearance, but DreamFusion adds additional regularizers and optimization strategies to improve geometry. The resulting trained NeRFs are coherent, with high-quality normals, surface geometry and depth, and are relightable with a Lambertian shading model.


Citation

@article{poole2022dreamfusion,
  author = {Poole, Ben and Jain, Ajay and Barron, Jonathan T. and Mildenhall, Ben},
  title = {DreamFusion: Text-to-3D using 2D Diffusion},
  journal = {arXiv},
  year = {2022},
}
av日韩中文_日韩成人午夜精品_日韩国产激情在线_久久久噜噜噜久久中文字幕色伊伊_久久综合社区_欧美激情一级精品国产_51精品在线观看
开心九九激情九九欧美日韩精美视频电影 | 国产精品美女视频| 国产一区二区久久| 裸体歌舞表演一区二区| 欧美亚洲综合久久| 色综合久久久久综合体| 99在线视频精品| 国产91在线|亚洲| 成人美女视频在线看| 国产成人激情av| 国产成人免费在线观看不卡| 日韩欧美一卡二卡| 久久久一区二区三区| 精品国产污污免费网站入口| 国产亚洲精品超碰| 国产精品大尺度| 亚洲一区二区三区激情| 一区二区三区鲁丝不卡| 丝袜脚交一区二区| 轻轻草成人在线| 亚洲男女一区二区三区| 日韩亚洲欧美中文三级| 成人18精品视频| 亚洲成人激情综合网| 国产精品国产三级国产aⅴ原创| 亚洲日本在线a| 日韩视频在线你懂得| 久久先锋影音av鲁色资源| 99久久精品国产一区| 天天综合日日夜夜精品| 一区二区三区**美女毛片| 国产黑丝在线一区二区三区| 精品人伦一区二区色婷婷| 精品少妇一区二区三区日产乱码| 亚洲一区二区三区四区中文字幕| 国产91高潮流白浆在线麻豆| 欧美日韩一区二区在线观看| 亚洲精品va在线观看| 国产风韵犹存在线视精品| 亚洲中国最大av网站| 日韩精品资源二区在线| 粉嫩蜜臀av国产精品网站| 亚洲免费观看视频| 欧美日韩成人激情| 欧美电影免费观看完整版| 日本女优在线视频一区二区| 欧美高清激情brazzers| 2023国产一二三区日本精品2022| 精品一区二区三区在线播放| 色屁屁一区二区| 亚洲一区二区不卡免费| 7777精品久久久大香线蕉| 久久黄色级2电影| 337p日本欧洲亚洲大胆精品| 波多野结衣91| 亚洲精品高清在线| 精品久久久久久久久久久久久久久| 91免费观看视频| 精品在线免费视频| 婷婷中文字幕一区三区| 亚洲欧美视频在线观看视频| 亚洲精品在线网站| 色8久久人人97超碰香蕉987| 成人国产精品免费观看| 久久人人97超碰com| 岛国精品在线观看| 亚洲国产你懂的| 精品亚洲国内自在自线福利| 亚洲欧洲韩国日本视频| 67194成人在线观看| 成人黄色在线网站| 亚洲成精国产精品女| 国产亚洲美州欧州综合国| 一本大道久久a久久综合| 国内精品国产三级国产a久久 | 国内精品伊人久久久久av一坑| 蜜桃视频第一区免费观看| 91麻豆精品国产综合久久久久久| 色综合中文字幕国产 | 国产精品一区二区视频| 欧美日韩国产天堂| 国产69精品久久久久毛片| 无码av中文一区二区三区桃花岛| 中文字幕 久热精品 视频在线| 久久成人精品无人区| 亚洲激情五月婷婷| 久久久午夜精品理论片中文字幕| 欧美日韩日本视频| 色综合色综合色综合| 国产精品亚洲人在线观看| 国产91在线观看| 91在线小视频| 在线看不卡av| 国产精品一品二品| 男男视频亚洲欧美| 午夜精品久久久久久不卡8050| 亚洲欧洲精品成人久久奇米网| 欧美经典一区二区| 久久九九久久九九| 精品国产91亚洲一区二区三区婷婷 | 亚洲伊人伊色伊影伊综合网| 欧美一区二区三区视频在线观看 | 国产精品久久久久天堂| 久久日一线二线三线suv| 欧美一区二区性放荡片| 51精品视频一区二区三区| 777a∨成人精品桃花网| 337p亚洲精品色噜噜狠狠| 国产清纯在线一区二区www| 精品国内二区三区| 欧美麻豆精品久久久久久| 99国产欧美另类久久久精品| 成人午夜碰碰视频| 99在线热播精品免费| 色综合久久99| 欧洲av一区二区嗯嗯嗯啊| 色欧美日韩亚洲| 色哟哟亚洲精品| 欧美日本国产视频| 日日欢夜夜爽一区| 蜜乳av一区二区| 国产一区视频网站| 成人av在线看| 欧美亚洲综合色| 日韩一级黄色片| 精品国产91乱码一区二区三区 | 亚洲精品日韩一| 午夜伊人狠狠久久| 精品制服美女久久| 972aa.com艺术欧美| 91麻豆精品国产91久久久久 | 三级亚洲高清视频| 久久99久久99精品免视看婷婷 | 视频在线在亚洲| 麻豆精品国产91久久久久久| 国产成人在线观看免费网站| 91老师国产黑色丝袜在线| 欧美高清性hdvideosex| 久久久久久综合| 亚洲三级电影全部在线观看高清| 日韩精品一级二级| 国产不卡视频在线观看| 欧美色图在线观看| 国产日本亚洲高清| 日韩av一二三| 97超碰欧美中文字幕| 欧美大片一区二区| 久久免费视频一区| 久久精品亚洲精品国产欧美| 国产欧美日韩视频一区二区| 日韩av一二三| 色综合天天综合| 久久久久久免费网| 午夜不卡在线视频| 91在线视频免费观看| 欧美成人综合网站| 亚洲成av人片一区二区梦乃| 不卡欧美aaaaa| 久久精品视频网| 日本三级韩国三级欧美三级| 色综合天天综合网国产成人综合天 | 欧美激情一区二区三区| 日本美女一区二区| 91视频www| 国产午夜精品福利| 免费在线观看日韩欧美| 欧美怡红院视频| 一区二区三区.www| 色综合一区二区三区| 亚洲国产va精品久久久不卡综合| 欧美视频一区二区三区| 日本欧美一区二区三区乱码| 成人h动漫精品一区二区| 国产精品久久久久影院老司 | 精品久久久久久久人人人人传媒 | 亚洲蜜臀av乱码久久精品蜜桃| 国产宾馆实践打屁股91| 日韩免费一区二区| 蜜桃91丨九色丨蝌蚪91桃色| 欧美喷潮久久久xxxxx| 亚洲伊人伊色伊影伊综合网| 色久综合一二码| 久久久久综合网| 久久激情综合网| 精品999在线播放| 国产精品一区二区三区99| 亚洲精品一区在线观看| 免费久久精品视频| 久久综合五月天婷婷伊人| 国产酒店精品激情| 中文字幕在线视频一区| 成人免费视频免费观看| 国产精品久久久久久久久久久免费看| 懂色av中文一区二区三区| 7777精品伊人久久久大香线蕉 | 欧美艳星brazzers| 日日摸夜夜添夜夜添精品视频| 欧美乱熟臀69xxxxxx| 奇米影视一区二区三区小说| 精品国产电影一区二区|