Mapping behavioural actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioural data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data to uncover neural dynamics. Here, we fill this gap with a novel encoding method, CEBRA, that jointly uses behavioural and neural data in a (supervised) hypothesis- or (self-supervised) discovery-driven manner to produce both consistent and high-performance latent spaces. We show that consistency can be used as a metric for uncovering meaningful differences, and the inferred latents can be used for decoding. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, produces consistent latent spaces across 2-photon and Neuropixels data, and can provide rapid, high-accuracy decoding of natural movies from visual cortex.

Software

You can find our official implementation of the CEBRA algorithm on GitHub: Watch and Star the repository to be notified of future updates and releases. You can also follow us on Twitter for updates on the project.

If you are interested in collaborations, please contact us via email.

BibTeX

Please cite our papers as follows:

@article{schneider2023cebra,
  author={Steffen Schneider and Jin Hwa Lee and Mackenzie Weygandt Mathis},
  title={Learnable latent embeddings for joint behavioural and neural analysis},
  journal={Nature},
  year={2023},
  month={May},
  day={03},
  issn={1476-4687},
  doi={10.1038/s41586-023-06031-6},
  url={https://doi.org/10.1038/s41586-023-06031-6}
}
@inproceedings{schneider2025timeseries,
  title={Time-series attribution maps with regularized contrastive learning},
  author={Steffen Schneider and Rodrigo Gonz{\'a}lez Laiz and Anastasiia Filippova and Markus Frey and Mackenzie Weygandt Mathis},
  booktitle={The 28th International Conference on Artificial Intelligence and Statistics},
  year={2025},
  url={https://proceedings.mlr.press/v258/schneider25a.html}
}

Impact & Citations

CEBRA has been cited in numerous high-impact publications across neuroscience, machine learning, and related fields. Our work has influenced research in neural decoding, brain-computer interfaces, computational neuroscience, and machine learning methods for time-series analysis.

View All Citations on Google Scholar

Our research has been cited in proceedings and journals including Nature Science ICML Nature Neuroscience ICML Neuron NeurIPS ICLR and others.

MLAI Logo
? 2021 - present | EPFL Mathis Laboratory
Webpage designed using Bootstrap 5 and Fontawesome 5.
av日韩中文_日韩成人午夜精品_日韩国产激情在线_久久久噜噜噜久久中文字幕色伊伊_久久综合社区_欧美激情一级精品国产_51精品在线观看
国产尤物一区二区| 91福利国产精品| 欧美日韩国产一二三| 国产福利91精品一区| 午夜影院在线观看欧美| 国产色综合久久| 欧美乱妇20p| 91麻豆精品在线观看| 国产毛片精品一区| 日本麻豆一区二区三区视频| ...av二区三区久久精品| 精品999久久久| 欧美精品免费视频| 在线精品视频免费观看| av在线播放一区二区三区| 国产成人在线视频网站| 国产最新精品免费| 精品综合久久久久久8888| 亚洲国产wwwccc36天堂| 一卡二卡三卡日韩欧美| 怡红院av一区二区三区| 亚洲乱码中文字幕| 亚洲免费色视频| 亚洲免费视频中文字幕| 亚洲欧美激情一区二区| 亚洲桃色在线一区| 亚洲精品国产一区二区精华液 | 色哟哟欧美精品| 久久99国内精品| 国产一区二区三区在线观看精品 | av一区二区三区黑人| 粉嫩aⅴ一区二区三区四区五区| 久久99精品久久只有精品| 久久草av在线| 国产成人在线视频播放| av电影一区二区| 日本精品视频一区二区| 欧美在线高清视频| 6080日韩午夜伦伦午夜伦| 日韩欧美一区二区久久婷婷| 7777精品伊人久久久大香线蕉经典版下载 | 久久蜜桃一区二区| 欧美国产国产综合| 亚洲男人天堂av网| 日韩电影在线免费| 国产麻豆欧美日韩一区| 成年人国产精品| 欧美午夜精品免费| 欧美刺激午夜性久久久久久久| 久久精品夜色噜噜亚洲a∨| 中文字幕欧美区| 亚洲午夜精品在线| 国产一区二区三区四区五区入口| 北岛玲一区二区三区四区| 91高清视频在线| 日韩欧美国产小视频| 国产精品视频第一区| 亚洲永久精品国产| 国产精品综合在线视频| 91国在线观看| 国产欧美视频一区二区三区| 一卡二卡欧美日韩| 国产高清在线精品| 欧美色精品天天在线观看视频| 精品av久久707| 午夜av一区二区| www.久久精品| 精品国产亚洲在线| 国产精品高清亚洲| 看电影不卡的网站| 色综合久久中文字幕| 欧美成人一级视频| 亚洲成人一区二区在线观看| 粉嫩av一区二区三区粉嫩| 91精品蜜臀在线一区尤物| 中文字幕亚洲成人| 久久国产精品色| 欧美日韩一本到| 国产精品视频一二三区 | 国产亚洲精品aa| 日韩经典中文字幕一区| k8久久久一区二区三区 | 欧美日韩精品专区| 中文在线一区二区| 激情丁香综合五月| 777精品伊人久久久久大香线蕉| 亚洲人亚洲人成电影网站色| 国产一区二区主播在线| 欧美日韩一区二区三区四区五区| 欧美高清在线精品一区| 久久99精品国产麻豆婷婷洗澡| 欧美综合色免费| 中文字幕在线观看一区二区| 国产精品99久久久| 久久久久久免费网| 黑人精品欧美一区二区蜜桃| 宅男在线国产精品| 日韩电影免费一区| 欧美日韩夫妻久久| 免费在线视频一区| 日韩一区二区免费在线电影| 午夜精品视频在线观看| 欧美亚洲综合在线| 亚洲午夜在线视频| 欧美日韩亚洲国产综合| 亚洲成人激情自拍| 欧美午夜精品电影| 亚洲午夜久久久久久久久电影院| 欧美午夜寂寞影院| 青草国产精品久久久久久| 日韩欧美专区在线| 国产精品一区二区三区四区| 日本一区二区三区免费乱视频| 成人免费视频免费观看| 一区二区三区在线视频观看| 在线观看免费成人| 爽好多水快深点欧美视频| 5858s免费视频成人| 久久av资源站| 国产精品网站在线观看| 色综合久久中文字幕综合网| 亚洲国产视频一区| 欧美电视剧免费全集观看| 国产主播一区二区三区| 欧美激情在线一区二区三区| 99精品欧美一区| 天堂久久久久va久久久久| 欧美成人一区二区三区片免费 | 国产成人综合自拍| 国产精品国产三级国产a| 成人午夜激情在线| 一区二区三区四区在线播放| 欧美高清激情brazzers| 国产精品一区专区| 一区二区三区丝袜| 日韩精品一区二区三区在线| 成人国产亚洲欧美成人综合网| 亚洲国产中文字幕在线视频综合| 欧美tickling挠脚心丨vk| 99久久精品情趣| 午夜在线电影亚洲一区| 亚洲国产高清在线观看视频| 欧美视频自拍偷拍| 国产伦精品一区二区三区视频青涩 | 狠狠色狠狠色综合系列| 中文字幕一区二区三中文字幕| 欧美日韩精品高清| 国产成人免费在线视频| 日韩激情一二三区| 国产精品不卡视频| www久久精品| 欧美精品九九99久久| 波多野结衣中文字幕一区| 蜜臀91精品一区二区三区| 国产精品福利一区二区三区| 日韩精品中午字幕| 欧日韩精品视频| 成人av高清在线| 国内精品国产成人国产三级粉色| 亚洲黄色性网站| 国产精品天美传媒| 精品奇米国产一区二区三区| 欧美唯美清纯偷拍| 国产99久久久久久免费看农村| 五月天亚洲婷婷| 亚洲精品国产高清久久伦理二区| 精品国产一区二区三区忘忧草 | 中文字幕一区二区三区在线观看| 欧美不卡一区二区| 欧美色综合天天久久综合精品| 国产91丝袜在线播放0| 日韩av一区二区在线影视| 亚洲一区二区三区小说| 国产精品美女久久久久av爽李琼| 精品国产伦理网| 精品剧情在线观看| 欧美一区二区不卡视频| 欧美精品在线观看播放| 欧美日韩亚洲高清一区二区| 日本精品免费观看高清观看| 91免费精品国自产拍在线不卡| 国产精品 欧美精品| 国产乱码精品一区二区三| 久久精品国产亚洲aⅴ| 蜜乳av一区二区| 精品在线视频一区| 国产中文字幕精品| 成人综合婷婷国产精品久久蜜臀| 国产成人午夜电影网| 不卡区在线中文字幕| 在线亚洲一区观看| 欧美日本一区二区三区四区| 日韩一区二区在线观看视频| 日韩视频免费观看高清完整版在线观看 | 欧美亚洲国产一区二区三区| 一本大道久久a久久精品综合| av一区二区三区四区| 91久久精品日日躁夜夜躁欧美| 欧美羞羞免费网站| 日韩一区国产二区欧美三区|